$hp$-Adaptation Driven by Polynomial-Degree-Robust A Posteriori Error Estimates for Elliptic Problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

hp-Adaptation Driven by Polynomial-Degree-Robust A Posteriori Error Estimates for Elliptic Problems

We devise and study experimentally adaptive strategies driven by a posteriori error estimates to select automatically both the space mesh and the polynomial degree in the numerical approximation of diffusion equations in two space dimensions. The adaptation is based on equilibrated flux estimates. These estimates are presented here for inhomogeneous Dirichlet and Neumann boundary conditions, fo...

متن کامل

Elliptic Reconstruction and a Posteriori Error Estimates for Parabolic Problems

It is known that the energy technique for a posteriori error analysis of finite element discretizations of parabolic problems yields suboptimal rates in the norm L∞(0, T ; L2(Ω)). In this paper we combine energy techniques with an appropriate pointwise representation of the error based on an elliptic reconstruction operator which restores the optimal order (and regularity for piecewise polynomi...

متن کامل

Residual type a posteriori error estimates for elliptic obstacle problems

under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we give an a posteriori error estimates with constitutive law for some obstacle problem. The error estimator involves some parameter ε appeared in some penalized equation.

متن کامل

Star-Based a Posteriori Error Estimates for Elliptic Problems

We give an a posteriori error estimator for nonconforming finite element approximations of diffusionreaction and Stokes problems, which relies on the solution of local problems on stars. It is proved to be equivalent to the energy error up to a data oscillation, without requiring Helmholtz decomposition of the error nor saturation assumption. Numerical experiments illustrate the good behavior a...

متن کامل

Guaranteed, Locally Space-Time Efficient, and Polynomial-Degree Robust a Posteriori Error Estimates for High-Order Discretizations of Parabolic Problems

We consider the a posteriori error analysis of approximations of parabolic problems based on arbitrarily high-order conforming Galerkin spatial discretizations and arbitrarily highorder discontinuous Galerkin temporal discretizations. Using equilibrated flux reconstructions, we present a posteriori error estimates for a norm composed of the L2(H1)∩H1(H−1)norm of the error and the temporal jumps...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2016

ISSN: 1064-8275,1095-7197

DOI: 10.1137/15m1026687